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Abstract 
Geometric Algebra formalism opens the door to developing a theory deeper 
than conventional quantum mechanics. Generalizations, stemming from im-
plementation of complex numbers as geometrically feasible objects in three 
dimensions, unambiguous definition of states, observables, measurements, 
Maxwell equations solution in those terms, bring into reality a kind of physical 
fields spreading through the whole three-dimensional space and values of the 
time parameter. The fields can be modified instantly in all points of space and 
time values, thus eliminating the concept of cause and effect, and perceiving 
of one-directional time. In the suggested theory all measured observable val-
ues get available all together, not through looking one by one. In this way 
quantum computer appeared to be a kind of analog computer keeping and 
instantly processing information by and on sets of objects possessing an in-
finite number of degrees of freedom. As practical implementation, the mul-
tithread GPUs bearing the CUDA language functionality allow to simulta-
neously calculate observable measurement values at a number of space/time 
discrete points only restricted by the GPU threads capacity. 
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1. Introduction. What a Legacy Analog Computer Is 

An analog computer is generally a type of computing device that uses the conti-
nuous variation aspect of physical phenomena to model the problem being 
solved [1].  

One of the most effective of such kind of relations is similarity between linear 
m echanical components and electrical components since they can be modeled 
using equations of the same form. Electronic analog computers were often 
used when a system of differential equations proved very difficult to solve by 

How to cite this paper: Soiguine, A. (2023) 
Quantum Computer on Nvidia GPU. Jour-
nal of Applied Mathematics and Physics, 
11, 2195-2204. 
https://doi.org/10.4236/jamp.2023.118141 
 
Received: July 13, 2023 
Accepted: August 11, 2023 
Published: August 14, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2023.118141
https://www.scirp.org/
https://doi.org/10.4236/jamp.2023.118141
http://creativecommons.org/licenses/by/4.0/


A. Soiguine 
 

 

DOI: 10.4236/jamp.2023.118141 2196 Journal of Applied Mathematics and Physics 
 

traditional means. As an example, the dynamics of a spring-mass system can  

be described by the equation my dy cy mg+ + =  , or 
d cy y y g
m m

= − − −   with y  

as the vertical position of a mass m, d the damping coefficient, c the spring con-
stant and g the gravity of Earth. The equivalent analog circuit consists of two in-
tegrators, Figure 1, for the state variables y−   (speed) and y (position), one in-
verter, Figure 2, and three potentiometers.  

2. Geometric Algebra Type of Analog Modeling Computer 

Different physical phenomena to model problems is considered below. 
The circular polarized electromagnetic waves are the type of waves following 

from the solution of Maxwell equations in free space done in geometric algebra 
terms [2] [3]. Let us take the electromagnetic field in the form: 

( )0 exp SF F I t k rω = − ⋅                      (1) 

which should be solution of  

( ) 0t F∂ +∇ =                         (2) 

Solution of (2) should be sum of a vector (electric field e) and bivector (mag-
netic field 3I h ): 

3F e I h= +  

with some initial conditions: 

3 0 3 0 3 00, 00, 0 0, 0t rt r t re I h F e I h e I h
= == = = =

+ = = + = +
   

 

 
Figure 1. Integrator. 

 

 
Figure 2. Inverter. 
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For given plane S in the (1) solution of the three-dimensions Maxwell Equa-
tion (2) has two options  

• ( ) ( )0 3 0 exp SF e I h I t k rω+ + = + − ⋅  , with 3
ˆ

Sk I I+ = , 3
ˆ ˆêhk I+ = , and the 

triple { }ˆ ˆˆ, ,e h k+  is right hand screw oriented, that’s rotation of ê  to ĥ  by π⁄2 
gives movement of right hand screw in the direction of 3 Sk k I I+ = . 

• ( ) ( )0 3 0 exp SF e I h I t k rω− − = + − ⋅  , with 3
ˆ

Sk I I− = − , 3
ˆ ˆêhk I− = − , and the 

triple { }ˆ ˆˆ, ,e h k−  is left hand screw oriented, that’s rotation of ê  to ĥ  by π⁄2 
gives movement of left hand screw in the direction of 3 Sk k I I− = −  or, equiva-
lently, movement of right hand screw in the opposite direction, k−− . 

• 0e  and 0h , initial values of e and h, are arbitrary mutually orthogonal 
vectors of equal length, lying on the plane S. Vectors 3 Sk k I I± ±= ±  are normal 
to that plane. The length of the “wave vectors” k±  is equal to angular fre-
quency ω . 

Maxwell Equation (4.2) is a linear one. Then any linear combination of F+  
and F−  saving the structure of (1) will also be a solution.  

Let’s write: 

( ) ( )( ) ( ) [ ] ( )
( ) ( )( ) ( ) [ ] ( )

0 3 0 3 0 3 0 3

0 3 0 3 0 3 0 3

exp exp exp

exp exp exp

S S S S S

S S S S S

F e I h I t I I r e I h I t I I I r

F e I h I t I I r e I h I t I I I r

ω ω

ω ω

+

−

     = + − ⋅ = + − ⋅     


    = + + ⋅ = + ⋅     

 (3) 

Then for arbitrary (real1) scalars λ  and µ : 

( ) ( ) ( )( )3 3
0 3 0 e e eS S S SS I I I r I I I rI tF F e I h ωλ µ λ µ   − ⋅ ⋅   

+ −+ = + +         (4) 

is solution of (4.2). The item in the second parenthesis is weighted linear com-
bination of two states with the same phase in the same plane but opposite sense 
of orientation. The states are strictly coupled, entangled if you prefer, because 
bivector plane should be the same for both, does not matter what happens with 
that plane. 

Arbitrary linear combination (4.4) can be rewritten as: 

e ePlane PlaneI Iϕ ϕλ µ
+ + − −

+                       (5), 

where  

( )( )1
3

1cos cos
2 St I I rϕ ω± −   = ⋅   

 , 

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

0

0

3 3

2 2
3 3

3

2
3

sin cos

1 sin 1 sin

sin

1 sin

S S
Plane S B

S S

S
E

S

t I I r t I I r
I I I

t I I r t I I r

t I I r
I

t I I r

ω ω

ω ω

ω

ω

±
   ⋅ ⋅   = +

   + ⋅ + ⋅   

 ⋅ +
 + ⋅ 

 

 





 

The triple of unit value basis orthonormal bivectors { }0 0
, ,S B EI I I  is com-

prised of the SI  bivector, dual to the propagation direction vector; 
0BI  is dual 

to initial vector of magnetic field; 
0EI  is dual to initial vector of electric field. 

 

 

1Remember, in the current theory scalars are real ones. “Complex” scalars have no sense. 
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The expression (5) is linear combination of two geometric algebra states, 
g-qubits. 

Linear combination of the two equally weighted basic solutions of the Max-
well equation F+  and F− , F Fλ µ+ −+  with 1λ µ= =  reads: 

( )
0 0

1

3
1 1 1 12cos cos sin cos sin
2 2 2 2S S B E

F F

I I r t I t I t I t

λ µ
λ µ

ω ω ω ω ω

+ − = =
+

  = ⋅ + + +   

 (6) 

where 1cos cos
2

tϕ ω=  and ( )21sin 1 sin
2

tϕ ω= + . It can be written in 

standard exponential form cos sin e BI
BI ϕϕ ϕ+ = .2 

I will call such g-qubits spreons (or sprefields) because they spread over the 
whole three-dimensional space for all values of time and, particularly, instantly 
change under Clifford translations over the whole three-dimensional space for 
all values of time, along with the results of measurement of any observable. 

3. CUDA GPU Simulation of Analog Modeling Computer 

Measurement is by definition the result of action of operator, namely state, wave 
function, in the form of g-qubit ( )SIα β+  [4], on an observable C:  

( ) ( ) ( ) ( )S S S SI C I I C Iα β α β α β α β− + = + +  

Take as first example the case of observable as a vector expanded in 
 { } { }

0 03 3 3 1 2 3, , , ,S B EI I I I I I e e e≡ , basis vectors dual to bivectors { }0 0
, ,S B EI I I : 

1 1 2 2 3 3C c e c e c e= + +  

Measure it with wave function (6): 

( )

( ) ( )
( )

0 0

0 0

0 0

0 0

2
3

2
3

1 3 2 3 3 3

1 1 1 14cos cos sin cos sin
2 2 2 2

1 1 1 1cos sin cos sin
2 2 2 2

2cos cos sin cos sin

cos

S S B E

S B E

S S B E

S B E

I I r t I t I t I t

C t I t I t I t

I I r t I t I t I t

c I I c I I c I I t

ω ω ω ω ω

ω ω ω ω

ω ω ω ω ω

ω

   ⋅ − − −      
  × + + +  
  

  = ⋅ − − −   

× + + ( )0 0
sin cos sinS B EI t I t I tω ω ω + + + 

  

The result is: 

( ) ( ) ( )2
3 3 1 1 2 2 2 1 34cos sin 2 cos2 sin 2 cos2SI I r c e c t c t e c t c t eω ω ω ω ω   ⋅ + + + −    

Geometrically that means that the measured vector is rotated by 
2
π

 in the  

0BI  plane, such that the 3 3c e  component becomes orthogonal to plane SI  
and remains unchanged. Two other vector components became orthogonal to 

0BI  and 
0EI  and continue rotating in SI  with angular velocity 2 tω . 

 

 

2Good to remember that the two basic solutions F+  and F−  differ only by the sign of 3 SI I , 

which is caused by orientation of SI  that in its turn defines if the triple { }3, ,ˆ ˆ
SH IE I±  is right- 

hand screw or left-hand screw oriented. 
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One another example of measurement is that of the g-qubit type observable 

0 1 1 2 2 3 3C C B C B C B+ + +  (actually Hopf fibration) by a state  

1 1 2 2 3 3B B Bα β β β+ + +  [5]: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1 2 2 3 3
0 1 1 2 2 3 3 0

2 2 2 2
1 1 2 3 2 1 2 3 3 2 1 3 1

2 2 2 2
1 3 1 2 2 2 1 3 3 2 3 1 2

2 2 2 2
1 1 3 2 2 1 2 3 3 3 1 2 3

2 2

2 2

2 2

B B BC C B C B C B C

C C C B

C C C B

C C C B

α β β β

α β β β β β αβ αβ β β

αβ β β α β β β β β αβ

β β αβ αβ β β α β β β

+ + ++ + +

 + + − + + − + + 

 + + + + − + + − 

 +



− + + + + − +

→









 

with: 

1 SB I= , 
02 BB I= , 

03 EB I= , ( )3
1 12cos cos
2 2SI I r tα ω ω = ⋅  ,  

( )1 3
12cos sin
2SI I r tβ ω ω = ⋅  , ( )2 3

12cos cos
2SI I r tβ ω ω = ⋅  ,  

( )3 3
12cos sin
2SI I r tβ ω ω = ⋅   

gives a 3G+  element spreading through the three-dimensional space for all val-
ues of time parameter t: 

( ) ( )
( )

0

0

2
3 0 3 1 3

2 1

4cos sin 2 cos2

sin 2 cos2

S S B

E

I I r C C I C t C t I

C t C t I

ω ω ω

ω ω

 ⋅ + + +  

+ − 
 

The current approach transcends common quantum computing schemes since 
the latter have tough problems of creating large sets of (entangled) qubits. In the 
current scheme any test observable can be placed into continuum of the ( ),t r  
dependent values of the spreon state. All other observables measurement results 
are connected to a measured observable by Clifford translations thus giving any 
amount of the observables values spread over three dimensions and at all in-
stants of time not generally following cause/effect ordering. 

The sprefield hardware requires special implementation as a photonic/laser 
device. Instead, an equivalent simulation scheme can be used where the amount 
of available space points there is only restricted by the overall available Nvidia 
GPU number of threads. 

In the case of measuring a vector the three parallel calculated measured by the 
sprefield vector components ( )2

3 34cos SI I r cω  ⋅  ,  
( ) ( )2

3 1 24cos sin 2 cos2SI I r c t c tω ω ω ⋅ +   and  
( ) ( )2

3 2 14cos sin 2 cos2SI I r c t c tω ω ω ⋅ −   are processed using the following 
fragmental variants of CUDA code: 

 
uint width = 512, height = 512;//optional value 
dim3 blockSize(16, 16);//optional value 

 
__global__ void quantKernel(float3* output, int dimx, int dimy, int dimz, 

float t) 
{ 
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float c1 = 1.0; //components of observable vectors 
float c2 = 1.0; 
float c3 = 1.0; 
float omega = 12560000.0;// possible angular velocity in the sprefield 

 
float tstep = 1.0f; 

 
float factor = 0.0; 

 
int qidx = threadIdx.x + blockIdx.x * blockDim.x; 
int qidy = threadIdx.y + blockIdx.y * blockDim.y; 
int qidz = threadIdx.z + blockIdx.z * blockDim.z; 

 
size_t oidx = qidx + qidy*dimx + qidz*dimx*dimy; 

 
output[oidx][0] = oidx*tstep; 
factor =4*(cosf(omega * output[oidx][0])) * (cosf(omega * output[oidx][0])); 
output[oidx][0] += factor * c3; 
output[oidx][1] = oidx*tstep; 
output[oidx][1] += factor * (c1 sin(2 * omega * t) + c2 cos (2 * omega * t)); 
output[oidx][2] = oidx*tstep; 
output[oidx][2] += factor * (c2 sin(2 * omega * t) + c1 cos (2 * omega * t)); 
} 

 
template<typename T> 
void init(char * devPtr, size_t pitch, int width, int height, int depth) 
{ 
size_t qPitch = pitch * height; 
int v = 0; 
for (int z = 0; z < depth; ++z) { 
char * slice = devPtr + z * qPitch;; 
for (int y = 0; y < height; ++y) { 
 T * row = (T *)(slice + y * pitch); 
for (int x = 0; x < width; ++x) { 
 row[x] = T(v++); 
 } 
 } 
 } 

 
int keyboard(unsigned char key) 
{ 
switch (key) 
  { 
case (27): 
cudaFree(d_output); 
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  free(h_output); 
return 1; 
  break; 
default: 
break; 

 
  } 
} 

 
int main(void) 
{ 
  VolumeType *h_volumeMem; 
unsigned char key; 
__device__ float g_fAnim = 0.0; 
float3* h_output = (float3*)malloc(size * sizeof(float3));//array for measured 

vector //observable values 
float3* d_output = NULL; 

 
checkCudaErrors( 
  cudaMalloc((void **)&d_output, width * height * sizeof(float3))); 
checkCudaErrors(cudaMemset(d_output, 0, width * height * sizeof(float3))); 

 
  cudaExtent volumeSizeBytes = make_cudaExtent(width, SIZE_Y, SIZE_Z); 
  cudaPitchedPtr d_volumeMem;  
checkCudaErrors (cudaMalloc3D(&d_volumeMem, volumeSizeBytes)); 

 
size_t size = d_volumeMem.pitch * SIZE_Y * SIZE_Z; 
  h_volumeMem = (VolumeType *)malloc(size); 
init<VolumeType>((char *)h_volumeMem, d_volumeMem.pitch, SIZE_X, 

SIZE_Y, SIZE_Z); 
checkCudaErrors (cudaMemcpy(d_volumeMem.ptr, h_volumeMem, size, 

cudaMemcpyHostToDevice)); 
 

  cudaArray * d_volumeArray; 
  cudaChannelFormatDesc channelDesc = cudaCreateChannel-

Desc<VolumeType>(); 
  cudaExtent volumeSize = make_cudaExtent(SIZE_X, SIZE_Y, SIZE_Z); 
checkCudaErrors ( cudaMalloc3DArray(&d_volumeArray, &channelDesc, 

volumeSize) );  
 

  cudaMemcpy3DParms copyParams = {0}; 
  copyParams.srcPtr = d_volumeMem; 
  copyParams.dstArray = d_volumeArray; 
  copyParams.extent = volumeSize; 
  copyParams.kind = cudaMemcpyDeviceToDevice; 
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checkCudaErrors ( cudaMemcpy3D(&copyParams) );  
  while(1) 
  { 
g_fAnim += 0.01f; 
quantKernel<<<1,dim3(4,4,4)>>>(d_output,4,4,4, g_fAnim); 
cudaError_t error = cudaGetLastError(); 

 
checkCudaErrors (cudaMemcpy(h_output, d_output, osize, cudaMemcpyDe-

viceToHost)); 
if (keyboard(key)==1) 
  exit(error); 

 } 
 

return error; 
} 

 
The GPU CUDA case of simulation of measurement of a g-qubit type of ob-

servable differs in quantKernel GPU executed function: 
__global__ void quantKernel(float4* output, int dimx, int dimy, int dimz, 

float t) 
{ 

 
float c1 = 1.0; //components of observable vectors 
float c2 = 1.0; 
float c3 = 1.0; 
float omega = 12560000.0;// variant of angular velocity in the sprefield 

 
float tstep = 1.0f; 

 
float factor = 0.0; 

 
int qidx = threadIdx.x + blockIdx.x * blockDim.x; 

int qidy = threadIdx.y + blockIdx.y * blockDim.y; 
int qidz = threadIdx.z + blockIdx.z * blockDim.z; 

 
size_t oidx = qidx + qidy*dimx + qidz*dimx*dimy; 

 
output[oidx][0] = oidx*tstep; 
factor =4*(cosf(omega * output[oidx][0])) * (cosf(omega * output[oidx][0])); 
output[oidx][0] += factor * c3; 
output[oidx][1] = oidx*tstep;  
output[oidx][1] += factor * (c1sin(2*omega*t)+c2cos(2*omega*t)); 
output[oidx][2] = oidx*tstep; 
output[oidx][2] += factor * (c2sin(2*omega*t)-c1cos(2*omega*t)); 
output[oidx][3] = factor; 
} 
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More flexibility in measurements can be achieved by scattering of the sprefield 
wave function before applying to observables. 

Arbitrary Clifford translation ( )0 01 2 3e cos sinBCI
S B EI I Iγ γ γ γ γ γ= + + +  acting 

on spreons (6) gives: 

( ) ( )

( )

( )
0

3 1 2 3

1 2 3

1 2 3

1 2

12cos cos cos sin sin sin cos sin sin
2

1 cos sin sin cos sin sin sin cos
2

1 cos cos sin sin sin cos sin sin
2

1 cos sin sin cos sin sin
2

S

S

B

I I r t t t t

t t t t I

t t t t I

t t

ω γ ω γ γ ω γ γ ω γ γ ω

γ ω γ γ ω γ γ ω γ γ ω

γ ω γ γ ω γ γ ω γ γ ω

γ ω γ γ ω γ γ

 ⋅ − − −  

+ + − +

+ + −

+ +

+

−( )
03 sin cos Et t Iω γ γ ω + 

 (7) 

This result is defined for all values of t and r, in other words the result of Clif-
ford translation instantly spreads through the whole three-dimensions for all 
values of time. 

The instant of time when the Clifford translation was applied makes no dif-
ference for the state (7) because it is simultaneously redefined for all values of t. 
The values of measurements ( )0 00 1 2 3 1 2 3, , , , , , , , , , , , ,S B EO C C C C I I I t rγ γ γ γ ω  also 
get instantly changed for all values of time of measurement, even if the Clifford 
translation was applied later than the measurement. That is an obvious demon-
stration that the suggested theory allows indefinite event casual order. In that 
way the very notion of the concept of cause and effect, ordered by time value in-
creasing, disappears.  

Since general result of measurement when Clifford translation takes place in 
an arbitrary plane is pretty complicated, I am only giving the result for the spe-
cial case 1 1γ =  and 2 3 0γ γ= =  (Clifford translation acts in plane SI ). The 
result is: 

( )
( ) ( )

( )( )
( )( )

0 0 1 2 3

0

0

0 1 2 3 1 2 3 1, 0

2
3 0 2 3

1 2 3

1 2 3

, , , , , , , , , , , , ,

4cos sin 2 cos2

sin 2 sin 2 cos2

cos2 sin 2 sin 2

S B E

S S

B

E

O C C C C I I I t r

I I r C C C I

C t t C C I

C t t C C I

γ γ γ
γ γ γ γ ω

ω γ γ

ω γ ω

ω γ ω

= = =

  = ⋅ + +  
+ + +

+ − + − 

 

The only component of measurement, namely the one lying in plane SI , does 
not change with time. The 

0BI  and 
0EI  components do depend on the time of 

measurement being modified forward and backward in time if Clifford transla-
tion is applied. Clifford translation modifies measurement results of the past and 
the future.  

4. Conclusion 

In the suggested theory all measured observable values get available all together, 
not through looking one by one. In this way quantum computer appeared to be a 
kind of analog computer keeping and instantly processing information by and 
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on sets of objects possessing an infinite number of degrees of freedom. The mul-
tithread GPUs bearing the CUDA language functionality allow to simultaneous-
ly calculate observable measurement values at a number of space/time discrete 
points, forward and backward in time, the number only restricted by the GPU 
threads capacity. That eliminates the tough hardware problem of creating huge 
and stable arrays of qubits, the base of quantum computing in conventional ap-
proaches.  
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